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molecules (AIM) and natural bond orbital (NBO) approaches have
trical (G) and electronic (AIM and NBO) consequences of H bonding

in malonaldehyde (MAE) derivatives and naphthazarin (NZ). AIM parameters and other measures of HB strength were
used: (a) for the verification of (i) the reliability of the O���O distance (G consequence) as an indicator of IMHB
strength; (ii) the capacity of the classically computed energetic parameters (DESEs) to serve as acceptable measures of
IMHB strength; and (b) for the separation of the DESEs into (i) stabilization (HB) energies (EHSEs) that serve as
apparent IMHB energies (EHB,As), and (ii) stabilization (isomerization) energies (ENSEs) that do not (owing to
intractable contributions that are not germane to the solitary HB donor(D)-acceptor(A) interactions). Some of the
sources of the anomalies have been rationalized. AIM topological properties were used to study the nature of the
IMHB interactions. An exponential parametric model for the correlation of EHSE with the O���O distance, which has
asymptotic characteristics at long O���O distances, was obtained. The model (a) has predictive ability, that is, can be
used to estimate, in an empirical manner, EHB,As that are otherwise grossly underestimated, and (b) can treat both the
MAE derivatives and the NZ systems even though they possess very different resonant spacers connecting the HBD-A
segments. MAE and NZ are also demonstrated to have essentially the same IMHB strength. By contrast, a quadratic
model for EHSE-HB distance correlation was found to be unphysical. Use of electronic consequences of H bonding was
shown to be essential for study of IMHBs with intractable interactions. Thus, AIM energy density and NBO second-
order interaction energy parameters were used for the verification of predictions of IMHB strengths made on the bases
of energetic and geometrical consequences. Copyright # 2006 John Wiley & Sons, Ltd.
Supplementary electronic material for this paper is available in Wiley Interscience at http://www.interscience.wiley.
com/jpages/0894-3230/suppmat/
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INTRODUCTION

Hydrogen bonds (HBs) play major roles in influencing the
structure and behavior of organic and inorganic com-
pounds and biomolecules, in molecular processes, and in
chemical reactivity.1–9 Hydrogen (H) bonding may also
play important roles in the biomedical activity of some
drugs. Of particular interest to this work in this regard is
the case of the anthracyclines daunomycin (DN) and
adriamycin (AD), which are very effective anti-tumor
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agents, but whose anti-tumor efficacy has been plagued
by dose-dependent cardiotoxic side effects.10 5-imino-
daunomycin (5IDN), the iminoquinone derivative of
DN,11,12 seems to be, however, devoid of the aforemen-
tioned side effects.11,13 In an attempt to provide with an
explanation for the observed difference in this critical
biochemical reactivity, differences in the H bonding
properties of DN/AD versus that of 5IDN have been
invoked as one of the possible reasons.11,13 However, the
nature of the intramolecular HBs (IMHBs) in the
aforementioned drug molecules is not completely under-
stood yet.14

The H-bonded segments of the pharmacophores of
AD and DN include dihydroxynaphthoquinone (other-
wise known as naphthazarin (NZ), Chart 1). Hence, NZ
may be used to model the H bonding properties of AD
and DN. NZ, in turn, consists of the six-membered cyclic
J. Phys. Org. Chem. 2006; 19: 425–444
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Chart 1. Malonaldehyde enol (MAE) in two chemically
different environments: the H-bonded (HB) cC and non-H-
bonded (non-HB) cO forms. Also shown is dihydroxy-
naphthoquinone (NZ), with the two H-bonded fragments
A and B
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HO—C——C—C——O fragments, which are structurally
related to the b-diketones malonaldehyde enol (MAE)
and acetylacetone enol (AAE). The H-bonding proper-
ties of MAE and AAE, which have been attributed to be,
in large measure, due to resonance-assisted H-
bonding16,17 have been studied extensively.15 The
resonant spacers joining the H-bonded segments in
MAE and AAE, and in NZ are however very different
(see Chart 1).18,19 Hence, it cannot be presumed that
conclusions emerging from the study of the H bonding
properties in MAE and its derivatives (sometimes referred
to as class I systems henceforth) can be of direct bases to
characterize the H bonding properties in NZ and in its
tautomers and rotamers thereof (sometimes referred to as
class II systems henceforth). It is, therefore, of interest to
establish the qualitative and quantitative similarities and
differences that may exist between the H bonding
properties of the two classes of systems.

Unlike in the case of intermolecular HBs,2,20 a
consensus on the nature of the correlation between the
energetic (E) consequences and the geometrical (G)
descriptors (such as O���O and O���H distances and O—H
bond elongation) of H bonding has not emerged yet in the
case of IMHBs. In fact, a cursory review21 of some of the
relevant literaturewould show contrasting conclusions and
disparate observations have been reported21–28 when it
comes to the nature of the IMHB E$G relationship (See
Refs. 21 and 25 for details). In one of such reports, Korth
et al.27 have pointed out that a primary reason for the lack
of E$G correlation for the systems they investigated to
be the inability to separate out intractable interactions (that
alter the stabilization energies (SEs)) from the sole HB
Copyright # 2006 John Wiley & Sons, Ltd.
donor–acceptor interactions. As the result, Korth et al.27

concluded that any attempt to carry out E$G
correlations for IMHB cases may not likely succeed.28

In line with the above, as will be evident in the ensuing
sections (vide infra), there are also some unresolved issues
when it comes to the H bonding consequences in some
MAE derivatives. Hence, the nature of the H bonding in
someMAE derivatives is not well understood yet either. A
reappraisal of some aspects of the previous studies on (a)
the MAE derivatives (vide infra), and (b) NZ14 (including
the re-evaluation of the estimates for the energies of HB
formation reported by us on NZ14) is therefore needed.
The results to be obtained from such studies are not only
important on their own right, but they are also essential for
the modeling and understanding of the H bonding
properties of the aforementioned drug molecules.

In light of the considerations and motivations briefly
discussed above, the specific aims this paper is concerned
with are threefold. The first aim is concerned with the
establishment of the behavior of the E$G correlation in
MAE derivatives. As part of this aim, we plan to
determine whether (i) the E$G correlation sought
would be in harmony with the behavior observed for
intermolecular cases (including the manifestation of
asymptotic behavior at long O���O or O���H distances)—
otherwise the model might be unphysical, and hence it
should be scrutinized properly, and (ii) the model sought
would have predictive ability. In the second aim, we seek
to (i) establish the similarity and/or difference in the
IMHB strengths of MAE and NZ, and (ii) determine if the
two classes of systems will be governed by the same
E$G correlation.

The use of quantum chemical (QC) calculations alone
is not always adequate to compute the energy of
intramolecular HB formation (vide infra). Hence, the
third, and method-oriented, goal of this paper is to assess
the advantages of the combined use of QC calculations
with either (or both) of the atoms-in-molecules (AIM)29

or the natural bond orbital (NBO)30 approaches for the
purposes of calibration of the strengths of the H bonding
interactions (in those cases when intractable interactions
are encountered), along with experimental results when
available. Furthermore, we intend to use AIM interaction
energy density and other parameters to get insight into the
nature of the HB interactions.
METHODS AND COMPUTATIONAL
DETAILS

Choice of theoretical model and calculations

The B3LYP/6-311G(d,p) model31 was chosen as the
primary method for the present work, because the model
has been shown to give good results32–45 especially for the
types of systems to be investigated in this work (See Ref.
32 for details)—additional justification is also provided
J. Phys. Org. Chem. 2006; 19: 425–444



INTEGRATED APPROACH TO THE STUDY OF INTRAMOLECULAR HYDROGEN BONDS 427
in the Results section under Model Chemistry. Some
calculations at the B3LYP/6-311þþG(d,p), B3LYP/6-
311þþG(2df,2p), and MP2/6-311þþG(d,p) levels have
also been done on selected systems as benchmark
calculations. Default options of the G9846 suite of
programs were used unless specified otherwise. To a
limited extent, the Spartan programwas also used.47 In all
cases, frequency (harmonic) calculations have been
performed, and zero point energy (ZPE) corrections have
been made. AIM topological analyses were carried
out in accordance with Bader’s approach29,48–51

using AIM200052a and/or AIMPAC.52b DENSITY¼
CURRENToption was used to generate the wavefunction
files (for topological analyses). NBO calculations (at the
B3LYP/6-311þþG(d,p) level) were carried out using the
NBO module (version 3.1) included in G98.
Calculation of IMHB stabilization energy

Estimates of IMHB SEs (DESE) were obtained as the
difference (DESE) between the energies of the equilibrium
geometries of the H-bonded (cC form) and non-H-bonded
(cO form) conformers defined in Chart 1, that is, via Eqn
(1). This approach has been the

DESE ¼ EcC � EcO ¼ EHB � Enon�HB (1)

standard way for the calculation of intramolecular ‘HB
energies.’ However, the DESEs calculated by Eqn (1) may
fall into one of two categories: (1) HB SEs that can serve
as acceptable indicators of the strengths of IMHBs26,53

(designated by EHSE hereafter), and (2) stabilization or
conformational energies that do not serve as acceptable
indicators of the HB strengths (owing to contributions to
DESE from intractable interactions that cannot be
separated out from the sole HB donor–acceptor inter-
actions).27 The latter category will be designated by ENSE

hereafter (see Chart 2 for a schematic representation).
EHSE = EHB,A

cO

cC

cO

cC

ENSE = EHSE          = EHB,A

In the absence 
intractable interaction

In the presence
intractable interactions

A B

EcC - EcO = EHSE EcC - EcO = ENSE

Chart 2. A: Hypothetical case when the energy difference
DESE, between that of the cC and cO forms is an acceptable
measure of the HB SE, EHSE, and is equal to the apparent HB
energy, EHB,A. B: The energy difference ENSE that may obtain
in the presence of appreciable intractable interactions (that
do not contribute to the sole HB interaction). Hence, ENSE
is no longer a measure of the HB strength because
ENSE 6¼ EHSE¼ EHB,A

Copyright # 2006 John Wiley & Sons, Ltd.
,

A priori, it is not possible to determine if a given DESE

value would belong to one or the other category. Such a
determination (as will be done in this report) is therefore
necessary. Furthermore, a given EHSE value is not a
genuine HB energy in the sense the intermolecular HB
interaction energy is as given in Refs. [2,54]. To
emphasize this distinction, the EHSE values—even if
they may generally be reasonable estimates of the HB
energy23,55–57—are referred to in this report as apparent
HB energies, EHB,As, as opposed to ‘HB energies.’ Hence,
EHSE¼EHB,A, but ENSE 6¼EHB,A.
SYSTEMS INVESTIGATED AND MODEL
CHEMISTRY

Systems investigated

The systems investigated in this work are divided into
classes I and II. The class I systems are further
subdivided, for the purposes of discussion, into subclasses
IA (consisting of homonuclear—O—H���O——C— IMHB
motifs), and IB (consisting heteronuclear IMHB motifs)
as shown in Chart 3. Included in subclass IA are the CH3,
F, and Cl derivatives, and systems IV and V (Chart 3). Of
the subclass IB systems, VI and VII (with S—H���O and
Se—H���O HB motifs, respectively) and VIII–XII (with
N—H���O HB motifs) are identified, respectively, as
subclass IB1 and subclass IB2 (Chart 3). The class II
systems include NZ and its tautomer (and their rotamers),
which possess two H-bonded segments (A and B,
Chart 1). However, in this report results will be presented
only for NZ (Chart 1) due to space limitation. Hence, a
full report on the class II systems is relegated to a future
communication. Some studies have also been done on
nitromalonamide (NMA) and benzoylacetone (BAA)
(Chart 3).
Model chemistry

The extent to which both the structural and energetic
parameters obtained by the B3LYP/6-311G(d,p) model
are reliable can be tested by comparing the results both
with experimental data available, and with results
obtained from correlated methods such as MP2. Table
1 shows the MP2/6-311þþG(d,p) HB binding energies
are consistently lower, the average deviation of the
B3LYP/6-311G(d,p) and B3LYP/6-311þþG(d,p) results
being (respectively) about 1.6 and 0.8 kcal/mol (Table 1).
Experimental binding energy data are available for I
(MAE) and Ibc (AAE), the values being �12.5 kcal/mol
for I,1b,17a and the estimates ranging from �10 to
�16.5 kcal/mol for Ibc,15g,16b,58 that is, the experimental
values for Ibc are less definitive. Apparently, both the
B3LYP and MP2 results are only with modest agreement
with the experimental results. The HB strength in Ibc
J. Phys. Org. Chem. 2006; 19: 425–444
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should be stronger than that in I (by about 2 kcal/mol or
so).26 The experimental value of �12.5 kcal/mol for
I is supported by the calculations of Dannenberg and
Rios.59 Consequently, the binding energy in Ibc should
be about �15 kcal/mol, which would then be actually
the same as that reported by Kopteva and Shigorin.16b

Hence, if we assume the �15 kcal/mol value as the
more acceptable one, the MP2/6-311þþG(d,p) result is
slightly higher, while the B3LYP/6-311þþG(d,p) result
is slightly lower than this value.

For the sake of brevity, we can leave out most of the
geometry data out of the discussion and draw our
attention to the all-important interatomic distances of the
intramolecular O—H—O bond. It then becomes clear
from the O���O and O���H distance data in Tables 1 and 2
that the B3LYP/6-311G(d,p) and MP2/6-311þþG(d,p)
methods give geometry results that are in good agreement
with each other.60 On the other hand, the O���O and O���H

Copyright # 2006 John Wiley & Sons, Ltd.
distance data are not in good agreement with the
experimental results reported for I and Ibc61 (See Ref.
61d for details). This finding suggests that even the MP2/
6-311þþG(d,p) binding energies are in doubt because
the energy of HB formation is a function of the geometry.
Because of this finding, the intent in this report is to
supplement the QC calculations with AIM and NBO
complimentary techniques so that the HB strengths are
characterized properly. In the AIM case, the use of the
B3LYP method is more practical for the purposes of
carrying out all-electron calculations. In the NBO case,
because NBO evaluates ‘orbital energies’ and second-
order SEs only when there is a well-defined one-electron
effective Hamiltonian operator (e.g., Fock or Kohn-Sham
operator), such an operator is unavailable for correlated
descriptions, except those of DFT type. Hence, the use
of the B3LYP method provides with a reasonable
compromise.
J. Phys. Org. Chem. 2006; 19: 425–444



Table 1. Comparison of DESE values obtained from B3LYP and MP2 calculationsa

Molecular systems O���O (Å) O���H (Å)

B3LYPb,c MP2b,d MP2 (B3LYP)e

6-311G(d,p) 6-311þþG(d,p) 6-311þþG(d,p) 6-31G(d,p)

I 2.584 1.686 �13.3 �12.3 (�12.5) �11.4 �14 (�15)
Ia 2.561 1.659 �13.4 �12.5 �11.9
Ib 2.561 1.649 �15.4 �14.2 �12.8
Ic 2.569 1.667 �14.4 �13.5 �12.4
Ibc 2.549 1.633 �16.2 �15.4 (�10 to �16.5) �14.6 �16.2 (�17.4)
Iia 2.649 1.777 �10.9 �10.1 �8.8
Iib 2.436 1.441 �14.5 �13.6 �13.5
Iic 2.677 1.823 �10.1 �9.2 �8.4
IIIa 2.602 1.717 �12.1 �11.2 �10
IIIb 2.492 1.539 �13.4 �12.6 �11.8
IIIc 2.651 1.792 �9.3 �8.8 �8.5

aO���O and O���H distances are from MP2/6-311þþG(d,p) calculations. All energies (DESE’s) are in kcal/mol.
b This work.
c Values in parentheses for I and Ibc are experimental values.
d The MP2 results have some error because the open forms had imaginary low frequencies (< 200 with most < 150 cm�1) which have been ignored (the
imaginary low frequencies seem to arise from methyl torsions (coupled with other motions) in the case of the methyl derivatives, and because the open forms
behave as floppy rings). [That the values of the ZPE are based on a harmonic model (in all cases) should also be taken into consideration with regard to the
accuracy of the results.]
e From Ref. 53b. Values in parentheses are B3LYP results.

Classification
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As alluded to before, the re-appraisal and comparison
of the class II systems with the class I systems is an
important aim of the present work. Thus, the use of
B3LYP/6-311G(d,p) model was also deemed necessary
for the purposes of consistency with previous work on the
class II systems.14 Finally, because our primary interest in
this work is to look for trends, the B3LYP/6-311G(d,p)
model should be adequate. This view is very consistent
with similar conclusions reached at by others in work on
IMHBs using the B3LYP method with even a smaller
basis set (6-31G(d)) than used here.27,62 Rabuck and
Scuseria62f,g have also shown that B3LYP/6-
311þþG(d,p) is well suited to obtain geometries and
energies in hydrogen bonded structures. The B3LYP/6-
311G(d,p) results will therefore be used for the analysis to
be carried out henceforth. However, a proviso to refine the
IMHB energetic parameters (to be predicted in an
empirical manner) will be made so that they are more in
line with the MP2/6-311þþG(d,p) results.
basis Weak Strong Very strong

Energetic
(kcal/mol)63

2–12 12–24 >24

Geometrical
(Å)17c,64

2.5�R(O���O) �2.65 R(O���O) �2.5
RESULTS AND ANALYSES

Prefatory calibration of the energetic and
geometrical parameters

Given in Table 2 are (i) DESEs; (ii) O���X distances,
R(O���X) (for the cC forms, with X¼O, N, S, Se); (iii)
O���H HB distances, R(O���H); (iv) equilibrium X—H
bond distances, R(X—H), (for the cC forms); (v) Q
symmetry coordinate parameters17 (for subclass IA), and
(vi) electron densities, rb,X—H, at the X—H bond critical
points (BCPs) for all the class I systems.
Copyright # 2006 John Wiley & Sons, Ltd.
Use of the energetic (DESE) and geometrical (O���O
distances) parameters of the systems with O���H—O HB
motifs (Table 2) leads to the following tentative rankings
in HB strength, respectively, R(E) and R(G):
� R
(E): Ibc > Ib > IIb � Ic > Ia � IIIb > I > IIIa >
IV� IIa> IIc� IIIac > IIIc > V > IIbc > IIac >
IIIbc.
� R
(G): IIb> IIIb> Ibc>V> Ib> Ic> Ia> I> IIIa
IIIbc� IIIac > IIbc > IIa > IV > IIIc > IIc > IIac.

Two of the different classifications of HB strengths that
are most discussed in conjunction with intramolecular
RAHBs17c are those based on the (a) energetic63 and (b)
geometrical (O���O distance)17c,64 consequences of H
bonding, as provided below.
We will thus use these classifications for a preliminary
exposition of some of the glaring discrepancies between
the above R(E) and R(G) rankings. Because the O���O
(and O���H) distances in IIb and IIIb are shorter than the
corresponding distances in Ibc, the HBs in IIb and IIIb
should be stronger than that in Ibc. But, as can be seen
from Table 2, the calculated jDESEsj are lower for IIb and
J. Phys. Org. Chem. 2006; 19: 425–444



Table 2. B3LYP/6-311G(d,p) Calculated HB properties [R (O���X), and R(O���H) values (Å), and DESE
s (kcal/mol)], rb (e�Å�3) and

equilibrium bond lengths, Re (Å) for X–H bonds of all the class I systems investigateda,b

RX–H rb,X–H R(O���H) R (O���X) Q �DESE

I 0.998 (0.997) 2.2 (2.2) 1.690 (1.703) 2.582 (2.589) 0.157 13.3 (12.3)
Ia 0.996 2.207 1.679 2.570 0.166 13.4
Ib 1.002 2.166 1.648 2.558 0.146 15.1
Ic 0.999 2.193 1.673 2.568 0.168 14.4
Ibc 1.003 (1.003) 2.159 (2.153) 1.630 (1.634) 2.543 (2.544) 0.156 16.2 (15.4)
IIa 0.991 2.247 1.755 2.628 0.171 10.9
IIb 1.041 (1.040) 1.903 (1.903) 1.507 (1.514) 2.471 (2.474) 0.094 14.5 (13.6)
IIc 0.984 (0.983) 2.301 (2.301) 1.818 (1.839) 2.667 (2.678) 0.197 10.1 (9.2)
IIac 0.981 (0.981) 2.321 (2.321) 1.862 (1.878) 2.695 (2.703) 0.212 8.7 (8.0)
IIbc 0.996 2.193 1.731 2.608 0.162 9.7
IIIa 0.994 2.225 1.713 2.594 0.169 12.1
IIIb 1.031 (1.028) 1.964 (1.977) 1.536 (1.550) 2.488 (2.496) 0.116 13.4 (12.6)
IIIc 0.983 (0.983) 2.315 (2.308) 1.825 (1.830) 2.666 (2.667) 0.192 9.3 (8.8)
IIIac 0.985 (0.985) 2.288(2.281) 1.760 (1.766) 2.607 (2.609) 0.193 10.0 (9.6)
IIIbc 0.994 2.207 1.730 2.606 0.169 8.5
IV 0.984 2.294 1.757 2.635 0.146 10.9
V 0.998 2.193 1.675 2.545 0.171 9.2
VI 1.362 (1.360) 1.451 (1.451) 1.913 (1.933) 3.070 (3.078) 2.4 (2.6)
VII 1.479 (1.478) 1.181 (1.181) 1.972 (2.000) 3.194 (3.203) �0.9 (�0.8)
VIII 1.021 2.267 2.187 2.972 2.3
IX 1.019 2.281 2.104 2.908 3.7
X 1.020 (1.020) 2.274 (2.274) 2.079 (2.094) 2.871 (2.878) 3.0 (2.9)
XI 1.023 2.261 2.129 2.943 4.2
XII 1.023 2.261 2.137 2.935 3.2

aDepending on the system, DESE may or may not be equal to EHB,A.
b X¼O (for I, Ix, IIx, IIIx, IV and V), S (for VI), Se (for VII), and N (for VIII–XII). Values in parentheses are B3LYP/6-311þþG(d,p) results.
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IIIb contradicting the strength predicted by the O���O
(and O���H) distances. If the DESEs of IIb and IIIb are
compared to that of I (MAE)—which can be used for
calibration purposes—the differences are only of
the order of 0.3–1.5 kcal/mol. Accordingly, if the DESEs
were to be interpreted as apparent HB energies, a prima
facie inference that suggests the HB strengths among
these three systems are similar would be made.65

Furthermore, juxtaposition of the geometrical17c,64 and
energetic63 HB strength classification criteria would
suggest that I should have a strong HB (belonging to the
12–24 kcal/mol classification), while IIb and IIIb should
have nearly very strong HBs (of the order of 24 kcal/mol).
Thus, if this rationalization holds, the difference between
the EHB,As in I and IIb/IIIb ought to be of the order of
10 kcal/mol, and not a difference of <1.5 kcal/mol
(according to the data in Table 2). Even more importantly,
the HB stabilization in I is about 12 kcal/mol,59,66 while
that in Ibc is about 14–15 kcal/mol,67 that is, in good
agreement with that calculated in this work. Hence, the
values reported for I and Ibc, along with the O���O
distances in Table 2, may be used for calibration purposes.
Accordingly, the HB stabilization in IIb and IIIb should
be significantly greater than that in Ibc. Similarly, EHB,As
of IIbc, IIIbc, and V should be comparable to that of I
(�12 kcal) as opposed to the values of 8.5–10 kcal/mol
given in Table 2.
Copyright # 2006 John Wiley & Sons, Ltd.
The above anomalies are not trivial for two reasons: (1)
The estimated errors are well outside of the typical
experimental error of about 1–2 kcal/mol. (2) If the
underestimated values were to be used for correlation
purposes, they can be expected to lead, not only to
considerable scatter, but also more importantly, they may
lead to unphysical and misleading results.68 One
immediate question that arises then is: what is the
nature (and the extent thereof) of the perturbation by
the substituents that has lead to such anomalies? To
seek some answers to this question, we have examined
the geometries and molecular structures (topological)
of a selected set of systems to determine the
structural perturbations (by the CH3, F, and Cl
substituents) that might have led to the intractable
interactions (which in turn might have led to the error in
the calculated HB SEs).
Assessment of the causes of the anomalies:
cross-correlation analyses

The systems that exhibit significant anomalies in the
energetic parameters are IIb, IIIb, IIbc, IIIbc, V, VII,
and possibly VI. However, the sources of the anomalies
are not necessarily the same in every case. This section
considers mainly the anomalies in IIb, IIIb, IIbc, and
J. Phys. Org. Chem. 2006; 19: 425–444



Figure 1. Non-H-bonded forms of IIb, IIIb, and V. IIb0 and IIIb0 are fully optimized (B3LYP/6-311G(d,p)) non-H-bonded forms
of IIb and IIIb (respectively). V0 was obtained when the H of the enol of Vwas rotated by 1808 and the resulting input geometry
was fully optimized (2-1-3-4 dihedral angle¼898). V00 was obtained when the same input geometry was constrained to be
planar and optimized. The DESE value for V in Table 2 is the difference between the energies of V and V0. V0 is more stable than
V00 by about 3.2 kcal/mol. Distances are in Å and bond angles are in degrees (8)
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IIIbc. The case of VII and VI will be addressed in Trend
in Energetic (E) versus Geometrical (G) Consequences
Section, and that of V both in this section (some details
are given in Fig. 1) and in Dissection of DESE: Acceptable
(EHSE) and Non-Acceptable (ENSE) Measures of HB
Strength section, Trend in Energetic (E) Versus Geo-
metrical (G) Consequences section, and Natural Bond
Orbital Studies section as well.

The anomalies may arise from unequal changes (upon
H bonding) in geometry, charge, bond-angle
distortion and from differences in the molecular
structures (i.e., the connectivity schemes governed by
the topology of r).48,69 To explore such contributions, two
types of cross-correlation analyses of the changes in
geometry, charge, and bond-angle distortion were
made using a selected set of systems, that is, I, Ib,
IIb, and IIIb: (a) vertical comparison of the
various systems with I, and (b) horizontal comparison
of cC and cO forms of the same molecule. Cross-
correlation analyses of the molecular graphs (MGs) of
the cC and cO forms (data not shown) were also made.
The results of such analyses did not reveal a clear trend.
The effects considered did not also appear to be
significant enough to contribute to the observed
anomalies in the energetic parameters. Hence, the details
are not provided here, but are given as Supplementary
Material. On the other hand, H���F/Cl interactions (and
O���F/Cl interactions to a marginal degree), which are
found to make significant contributions, are discussed
briefly below.
Copyright # 2006 John Wiley & Sons, Ltd.
Horizontal cross-correlation analyses of H���F/Cl
and O���F/Cl interactions. In the cO forms of the
b-halo derivatives (but not in the cC forms), intramole-
cular H���F and H���Cl interactions are possible between
the H of the enol and the F/Cl atoms (Fig. 1). The H���F
and H���Cl distances (Fig. 1) are 2.172 and 2.501 Å in,
respectively, IIb and IIIb, that is, well below the
corresponding sums of the Pauling’s van der Waals radii
(2.55 and 3.01 Å).70a Very preliminary estimates indicate
the contribution of these interactions [primarily due to
van der Waals forces in accordance with our AIM
analysis48,70c] to the stabilization in the cO forms of IIb
and IIIb may be of the order of 3 kcal/mol. This would
reduce the respective DESEs (in absolute terms), and
hence would lead to the underestimation of EHB,A.
Because of the b-halo substitutions in IIbc and IIIbc (as
in IIb and IIIb), the same type of interactions will also
lead to the underestimation of EHB,A in IIbc and IIIbc as
well. These kinds of interactions have been observed
recently in similar cases.53c

O���F/Cl Interactions. Our analysis does not suggest
repulsions between the lone pairs of the O6 and F/Cl
atoms would lead to greater O���O contractions. However,
O���F and O���Cl interactions may impact the relative SEs
in another way. Upon hydrogen bonding, the C—F, C—
Cl, and C4—O6 bond lengths decrease (Supplemental
Material, Figure S1) without a significant widening of
angles F—C4—O6 and Cl—C4—O6 (Supplemental
Material, Figure S2). This effect, in turn, decreases the
J. Phys. Org. Chem. 2006; 19: 425–444
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Figure 2. Plots of rb against the O–H bond distance. The
region of elongation of the O–H bond (D R>0) has been
indicated roughly. Data for both the cC (filled circles) and cO
(unfilled circles) forms have been included, and the same
regression line can fit all the data.79 The dotted line shown is
the trend line. This Figure is to be compared with Fig. 3
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O���F distance by 0.031 Å (from 2.216 to 2.185 Å) and the
O���Cl distance by 0.048 Å (from 2.611 to 2.563 Å). Such
decreases in interatomic distances might lead to greater
repulsions between the lone pairs of O6 and F/Cl atoms in
the cC forms thereby contributing to the underestimation
of EHB,A. However, such effects can be only very
marginal.

Summary of the cross-correlation analyses. The
magnitudes of the anomalies (as estimated earlier),
particularly in the case of IIb and IIIb, cannot be
accounted for by the H���F/Cl van der Waals inter-
actions70b in the cO forms alone. Other factors that may
arise from differences in the substituent-induced effects
of CH3 (a weak p- and s-donor),17,71 F and Cl (both
strong p-donors and s-acceptors)17,71 are probably
therefore involved as well. For example, since elec-
tron-withdrawing effects (through the s system) of the F
and Cl substituents should also lead to bond length
deformations, the influence of s electron delocalization,
in addition to p electron delocalization effects, should
also be taken into consideration.72 The NBO analysis
(which will be addressed in a future communication)
does, in fact, show that different degrees of s
delocalization take place upon H bonding. This, in turn,
should affect the binding energies to different degrees. In
any case, the combined effects of the different intractable
interactions discussed above would certainly bias any
DESE$G correlation. Hence, any parametric model
obtained for the correlation of DESE with geometrical
consequences has to be scrutinized thoroughly to assure it
is consistent with the fundamentals of the physics of the
interactions.
Further verification of the E- and G-based
trends and separation of DESE

into EHSE and ENSE

In this section, various parameters will be used (a) to
further rank the strengths of the homonuclear IMHBs
(i.e., the O ���H—OHB systems), (b) to separate theDESE

values into acceptable (EHSE) and non-acceptable (ENSE)
measures of HB strength, and also (c) to compare and
verify the trends obtained on the basis of complementary
results.

Ranking on the basis of rb at the O—H bond
critical point. In hydrogen bridges such as O���H—O,
the correlation between the elongation (DR) of the O—H
bond and the HB energy is well established.62a,73,74 Since
O—H bond lengths are mutually intercorrelated with rb
of O—H bonds, the IMHB energy can be expected to
correlate with rb as well.

63b,75 Hence, one should be able
to assess the trend (or the ranking) in HB strength for a set
of systems using rbs of the O—H bonds (Table 2).
Moreover, the correlated behavior of the (rb, RO—H)
Copyright # 2006 John Wiley & Sons, Ltd.
pairs,76,77 as shown in Fig. 2, can be utilized as a graphical
representation of the increasing trend in HB strength with
the decrease in the rb (of the O—H bonds), that is, with
the increase in the elongation (DR) of the O—H bonds.78

The graphical representation of Fig. 2 allows one to
gauge how similar or different any two systems are with
respect to their relative HB strengths. Interestingly, the
(rb, RO—H) pairs for IIb and IIIb are conspicuously well
separated due to the F and Cl b-substitutions leading to
greater lengthening and polarization of the O—H bonds
upon H bonding. Accordingly, a more ‘sound’ ranking
that reflects the HB strengths of IIb and IIIb relative to
that of Ibc should be (on the basis of the rb,O—H data in
Table 2):
� R
(rb): IIb > IIIb � Ibc > Ib > Ic > V � I > Ia �
IIbc> IIIbc� IIIa> IIa> IIIac> IV� IIc> IIIc>
IIac.

A quick comparison of the R(rb) ranking with the R(G)
ranking (vide supra) leads to one notable observation (in
addition to a few others).79,80 That is, the ranking of
systems IVandV is not the same in all cases considered so
far.79,80 On the other hand, although there is internal
agreement between the R(G) and the R(rb) rankings, the
case of system V is still in question. But, it will be shown
later that the R(rb) ranking is the more accurate one.

Dissection of DESE: acceptable (EHSE) and non-
acceptable (ENSE) measures of HB strength. The
elongation (DR) of the O—H bond of O���H—O HBs is,
in general, one of the ‘signatures of H bonding.’73 Hence,
the anomalies in the DESE values should be identifiable
from a plot of DESE against the O—H bond distance.
Figure 3 shows such a plot. The open-circle data points
(Fig. 3), consisting of the DESEs of systems IIb, IIIb,
IIbc, IIIbc, andV, deviate from the trend observed for the
J. Phys. Org. Chem. 2006; 19: 425–444
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Figure 3. Plot of DESE against the O–H bond distance, and
the dissection of the DESE values into acceptable (EHSE) and
non-acceptable (ENSE) measures of HB strength. The region
of elongation of the O–H bond (DR> 0) has been indicated
roughly. The unfilled circle data points (subset IA2 whose
DESE¼ ENSE) show deviation from the trend observed
(dotted line) for the filled circle data points (subset IA1
whose DESE¼ EHSE). This Figure is to be compared to
Fig. 2

INTEGRATED APPROACH TO THE STUDY OF INTRAMOLECULAR HYDROGEN BONDS 433
filled-circle data points. We will identify the latter set of
12 systems (I, Ia, Ib, Ibc, Ic, IIa, IIac, IIc, IIIa, IIIac, IV,
and IIIc) as subclass IA1 hereafter. The observed trend is
consistent with the observation of Palomar et al.62a who
found a linear correlation between O—H bond lengths
and IMHB energy. This analysis, therefore, confirms the
DESEs of systems IIb, IIIb, IIbc, IIIbc, and V are not
acceptable measures of the HB strength. This set of
systems will be identified hereafter as subclass IA2.
Table 3. Comparison of various measures of the strengths of in
311G(d,p) levela

Parameter I Ib Ibc IIb IIIb

�DESE 13.3 15.1 16.2 14.5 13.4
R(O���O) (Å) 2.589 2.559 2.543 2.474 2.49
Q parameter 0.157 0.146 0.156 0.094 0.11
rb(O–H) (e. Å

�3) 2.2 2.166 2.159 1.903 1.96
DR (Å)b 0.036 0.039 0.04 0.075 0.06
10�2Dn (cm�1) 6.546 7.302 7.532 13.012 11.89
R(O���H) (Å) 1.703 1.651 1.63 1.514 1.55
rb(O���H) (e. Å�3) 0.337 0.378 0.391 0.54 0.49
�Hb 4.4 6.1 6.9 16.2 13.5
�Vb 30.4 34.8 36.9 54.6 49.7
�Vb

c 28.86 34.23 36.38 53.07 47.36
�EHB,E

d 13.3 14.7 15.6 21.1 19.6

aUnits for Vb and Hb are in kcal/mol per atomic unit volume (a.u.v.), and for D
bDR is the elongation of the O–H bond.
c Data are determined at the B3LYP/6-311þþG(d,p) level.
dEHB,Es are estimated in an empirical manner using EHSE-R(O���O) regressio
Consequences section.

Copyright # 2006 John Wiley & Sons, Ltd.
The case of IIb, IIIb, IIbc, and IIIbc has already been
rationalized (vide supra, Assessment of the Causes of the
Anomalies: Cross-Correlation Analyses section). In the
case of V, the deviation from the general trend can be
ascribed to: (a) the optimized cO form not being planar;
this diminishes the magnitude of DESE by about 3 kcal/
mol according to our preliminary estimates (see Fig. 1 for
details), (b) the shorter C——N and C—Nbonds, compared
to the C——C and C—C bonds, and the smaller N atom
(relative to C) bringing the O atoms closer without
necessarily strengthening the HB (this point will be
confirmed later), and (c) the greater N$O6 lone pair–
lone pair repulsive interaction in the cC form vis-à-vis
that in the nonplanar cO form.

Further verification on the basis of complementary
results. Although the R(G) and R(rb) rankings are in
good agreement with each other when it comes to
identifying the strongest and weakest H-bonded systems
(with O���H—O HB motifs), some discrepancies are also
evident when it comes to systems in between the two
regimes. This may be because the different parameters
may not reflect the culmination of the various subtle
modulations81 (which affect the H bonding) to the same
degree. Thus, consideration of various other measures of
HB strength is essential. Table 3 compiles such data.82 For
comparison purposes, also included in Table 3 are the
types of data presented so far. The data in Table 3 show
excellent qualitative internal consistency with the excep-
tion of the DESE data. Nonetheless, the different
parameters do not still give exactly the same quantitative
trend,83 because no two parameters can effectively reflect
all the nuances of the interactions which arise from the
interplay of various subtle modulations.81 In any case, the
trend obtainable on the basis of the Vb and Hb parameters
(Table 3) is:
tramolecular hydrogen bonds determined at the B3LYP/6-

V Ia IIbc IIIbc IIa IV

9.2 13.4 9.7 8.5 10.9 10.9
6 2.545 2.57 2.608 2.606 2.628 2.635
6 0.171 0.166 0.162 0.169 0.171 0.146
4 2.193 2.207 2.193 2.207 2.247 2.294
6 0.034 0.034 0.029 0.029 0.029 0.029
7 6.235 6.424 5.568 5.514 5.448 4.034
0 1.675 1.679 1.731 1.730 1.755 1.757
9 0.351 0.344 0.304 0.304 0.290 0.283

4.9 4.7 2.8 2.7 2.3 1.9
32.4 31.5 25.7 25.8 24.5 24.2
30.98 31.01 23.58 25.5 23.92
15.5 14 12 12.1 11 10.7

ESE, EHB,E and E(2) in kcal/mol.

n function discussed in Trend in Energetic (E) Versus Geometrical (G)
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Table 4. B3LYP/6-311G(d,p) calculated O���O and O���H
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� V

distances, and selected topological properties of r at the
(3,�1) hydrogen bond critical points (b)a

Sb R(O���O) R(O���H) rb r2rb �Vb �Hb

I 2.582 1.69 0.3387 3.31 30.3 4.4
Ib 2.558 1.648 0.3759 3.479 34.9 6.14
Ibc 2.543 1.63 0.3916 3.562 36.9 6.9
IIb 2.471 1.507 0.5582 3.377 57.1 17.6
IIIb 2.488 1.536 0.4959 3.508 49.4 13.3
NZ(A) 2.5880 1.7022 0.3257 3.388 29.15 3.55
(B) 2.5887 1.7026 0.3253 3.391 29.1 3.54

aUnits for R(O���O) and R(O���H) are: Å; for rb: e.Å�3; for r2rb: e.Å
�5;

for energy densities (Vb and Hb): kcal/mol per atomic unit volume (a.u.v.).
bMolecular system; (A) and (B) denotes the two H-bonded segments of NZ.
b(Hb): IIb> IIIb� Ibc> Ib>V� Ia> I> IIIbc�
IIbc > IIa > IV

This trend verifies how the HB strengths of the systems
of subclass IA2 should mesh with those in subclass IA1.
The data in Table 3 can also be used to quantify the
relative HB strengths using a suitable reference such as I
or Ibc. The data also show the R(rb) ranking is more in
line with the above ranking while the O���O distance trend
is not quite so.

One of the main points of the preceding discussion is
this simple one: information on the electronic bases of the
H bonding (as determined here by the AIM formalism) is
essential for the verification of the predictions of HB
strengths on the basis of energetic and geometrical
consequences, and for a more quantitative assessment of
the relative strengths of the HB interactions. More will
also be said in Nature of the IMHB Interactions and
Energy Density-R(O���H) Correlation section regarding
other uses provided by the Vb and Hb parameters.
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igure 4. Scatter plot of EHSE and ENSE vs. Vb showing the
eviation of the ENSE values from the trend line. Only O–H���O
ystems are included. Filled circles are EHSEs of sublass IA1;
nfilled circles are ENSEs of sublass IA2; the unfilled triangle
for EHSE of NZ; half-filled circles are for nitromalonamide
MA) and benzoylacetone (BAA) whose apparent HB ener-
ies were taken from references 64 and 41, respectively
COMPARISON OF NAPHTHAZARIN (NZ)
WITH SUBCLASS IA SYSTEMS

As alluded to earlier, for the sake of brevity,
consideration of all the class II systems is not feasible
in this communication. Accordingly, the discussion in
this section will focus on NZ (Chart 1) only. The nature
of the structural perturbations in NZ (in system IV as
well) and subclass IA systems might be expected to be
different—owing to the different resonant spacers
connecting the HB donor–acceptor segments (see
Charts 1 and 3).56,84

Insight into the HB interactions in NZ and the subclass
IA systems can be gleaned using parameters at the HBCPs
(BCPs at the O���H HB). Selected topological properties,
including potential (V(r)) and total (H(r)) energy
densities,20 at the HBCPs (denoted by subscript b) are
given in Table 4. These parameters can be used for cross-
comparison of the cC forms. The Hb values are negative
(indicating the interactions are stabilizing). The values of
both Vb and Hb follow the decreasing suborder
IIb> IIIb> Ibc> Ib> I>NZ. This finding strongly
supports the R(G) ranking provided previously in
Prefatory Calibration of the Energetic and Geometrical
Parameters section. Similarly, the values of rb also lead to
the same trend. By contrast, no clearly discernable trend
can be obtained from ther2rb data. In fact, the values for
NZ are roughly 8–9 times more than those shown for the
systems in Table 4. Whether this result is a manifestation
of the fused aromatic ring needs further investigation.

Figure 4 shows a plot of EHSE and ENSE versus Vb.
Included in Fig. 4 are also data for NMA [a very strong
IMHB system, Chart 3]64 and for BAA (a low barrier HB
(LBHB) system, Chart 3),41 the DESE values of which
were taken from the literature.41,64 The plot shows, NZ as
Copyright # 2006 John Wiley & Sons, Ltd.
well as NMA64 and BAA41 conform to the general trend
observed. Thus, the very different nature of the resonant
spacer in NZ did not lead to a deviation from the trend for
subclass IA1. To gauge the strength of the IMHB in NZ
relative to that of I and Ibc (as well as to that of NMA and
BAA), the Vb-based decreasing suborder in HB strength
can be considered: NMA� IIb > IIIb > BAA > Ibc >
Ib > I > NZ.

Finally, there is one particularly noteworthy conclusion
from this section. Despite the very different nature of the
resonant spacers connecting the HB D-A segments, the
data in Table 4 and the plot in Fig. 4 (and Fig. 5, vide
infra) provide with conclusive evidence that the IMHB
strength in NZ is comparable to that of MAE (I).
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Figure 5. A scatter plot of DESE (kcal/mol) versus R(O���X)
(X––O, N,) distance. Subclass IA2 and IB1 systems (unfilled-
circle data points with ENSE values) were included for com-
pletion purposes only, and were not used in the regression
analyses. For curves a, c, and d, subclasses IA1 and IB2 (filled-
circle data points) were used. Curve b of the inset Figure was
independently obtained using a subset of subclass IA1 (sys-
tems with R(O���O) �2.65 Å as labeled in the inset Figure).
The regression function for this curve was later added to the
main Figure to demonstrate the behavior of curves a, c, and
d is not merely the influence of the data for the subclass IB2
systems. The regression functions (for data points with filled
circles only) are, for curve a (exponential): Eqn (2) (given in
the text); curve b (exponential; inset): EHSE¼�4.364�106

exp (�4.92 R(O���O)) (R2¼0.960); curve c (inverse-power
law): DESE¼ (5.109�105 R(O���X)�11.14 (R2¼0.977); curve
d (parabolic): DESE¼�69.3 R(O���X)2þ410.87 R(O���X) -
612.14 (R2¼0.974). For curves a, c, and d, DESE¼ EHSE
for subclass IA1 systems.
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TREND IN ENERGETIC (E) VERSUS
GEOMETRICAL (G) CONSEQUENCES

EHSE-R(O���X) correlation

Figure 5 shows a scatter plot of DESE versus R(O���X)
[O���X distances] which includes data for systems in four
subclasses. Subclass IA1 (for which DESE¼EHSE) and
subclass IB2 are represented by filled-circle data points.
Subclasses IA2 and IB1 are represented by unfilled circles.
Subclass IA2 systems (IIb, IIbc, IIIb, IIIbc, and V)
should be excluded from the E$G regression analysis
because their DESEs are not acceptable indicators of their
IMHB strengths. The subclass IB1 systems (VI and VII,
Copyright # 2006 John Wiley & Sons, Ltd.
cf. Chart 3) should also be excluded from the analysis for
the following reason. The open (cO) form of VII is found
to be more stable as reflected by the positive value ofDESE

(Table 2). What makes the cO form ofVIImore stable can
be attributed to the attractive O���Se interaction, as
reported before.85 The positive (destabilizing) DESE value
cannot therefore represent the HB strength in VII. In like
manner, the DESE of VI is likely to be influenced by the
O���S attractive forces in the cO form.85c–d NZ is not also
included, but instead is used as a test case to show the
regression function for the E$G correlation can predict
its apparent HB energy (EHB,A).

Accordingly, the curve fitting analyses were done
using the subclasses IA1 and IB2 systems only (i.e., data
points with filled circles consisting of O���H—O and
O���H—N HB motifs; or, X¼O, N cases). Very similar
results are obtained when R(O���H) is used instead (plot
not shown). Three different models were attempted. The
curves obtained (see Fig. 5 for details) are labeled a
(exponential), c (inverse-power), and d (parabolic/
quadratic).86

Consistency and asymptotic behavior. Two import-
ant conclusions concerning the fundamental behavior of the
E$G correlation in Fig. 5 can be noted. (1) The behavior
(including the asymptotic feature) manifested by curves a,
b, and c, and hence by the EHSE-R(O���X) (X¼O, N)
correlation, is consistent with the standard behavior
manifested by intermolecular HBs.2,20 (2) By contrast,
curve d—the concave downward parabolic curve—
although it has a high degree of fidelity, is obviously
unphysical at large distances, that is, it does not conform to
the asymptotic phenomenological behavior of HB inter-
action energies at large distances.2,20 Hence, this quadratic
model has to be rejected despite the good correlation
obtained for it. An important point worthy of note here: the
behavior demonstrated by curves a, b (see Fig. 5 for
details), and c is at variance with the quadratic (concave
upward) behavior reported in Refs. 23 and 24.87

Predictive ability of the EHSE-R(O���O) parametric
model. An important utility of the EHSE-R(O���O)
regression function would be its use as a predictive
model for the estimation of apparent HB energies in an
empirical manner—identified by EHB,Es hereafter.
Accordingly, several sample calculations of EHB,Es were
made using (Eqn (2)).

EHSE ¼ �5:554� 105 expð�4:12RðO � � � XÞÞ (2)

ðX ¼ O;N;DESE ¼ EHSE for subclass IA1Þ ½n

¼ 17 ðdata pointsÞ; R2 ¼ 0:975	

In particular, EHB,Es of �21 and �19.1 kcal/mol were
calculated, respectively, for IIb and IIIb as opposed to
DESEs of, respectively, �13.6 and �12.6 kcal/mol given
in Table 2. This indicates the apparent HB energies of IIb
J. Phys. Org. Chem. 2006; 19: 425–444
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and IIIb were grossly underestimated by as much as
7–8 kcal/mol. Consequently, this finding confirms that the
HB interactions in IIb and IIIb, when compared to I,
should be about 1.5–1.6 times as strong—in line with the
AIM and NBO results (presented herein). Similarly,
EHB,Es have been calculated for NMA,64 BAA,41 NZ, and
for MAE and other derivatives reported in Ref. 53. In all
cases, the EHB,Es thus estimated were in excellent
agreement (within the limits of <2 kcal/mol of exper-
imental error) with those reported,88 convincingly
demonstrating the exponential parametric model has
predictive ability.

The EHB,E estimate for NZ (�13 kcal/mol) when
compared with the DESE estimated by Eqn (1)
(�13 kcal/mol as reported before by us14) indicates
Eqn (2) can successfully reproduce the DESE (¼EHSE)
value for NZ. It will also be shown in a future
communication that Eqn (2) can successfully estimate
EHB,As for other class II systems as well. This is a
noteworthy finding. Because, despite the very different
nature of the resonant spacers connecting the HB D-A
segments, the two classes of systems (including NMA
and BAA) are governed by the same E$G correlation.

Verifiability of the E$G correlation. To indepen-
dently confirm the validity of the E$G correlation of
Fig. 5, the correlation that would obtain between EHB,E

(computed via Eqn (2)) and the energy density parameters
at the HBCP, Hb and Vb [Vb has been shown in the
intermolecular case to be approximately proportional to
the HB interaction energy20,89] has been sought. Figure 6
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Figure 6. Graphical illustration of the predictive ability of
the EHSE-R(O���O) parametric model (Eqn (2)). Only O–H���O
systems are included. This Figure is to be compared with Fig.
4. The plots show the correlation of both Vb and Vb (both in
kcal/mol per atomic unit volume) with the apparent HB
energies EHSE and EHB,E. For this plot, corresponding EHB,E
values have been used in place of ENSEs of sublass IA2. The
plot shows noticeable deviation in the case of NMA, and the
factor responsible has not been fully investigated yet

Copyright # 2006 John Wiley & Sons, Ltd.
shows such plots of Vb and Hb versus EHSE or EHB,E. That
is, the ENSE values in Fig. 4 have been replaced by EHB,Es.
The correlation obtained has a high degree of fidelity90 in
both cases, with the regression functions found being

Vb ¼ 3:044 EHB þ 9:785

fR ¼ 0:985; n ¼ 22 data pointsÞ; SD ¼ 2:17g
(3)

Hb ¼ 1:358 EHB þ 13:229

fR ¼ 0:976; n ¼ 21 ðdata pointsÞ; SD ¼ 1:24g
(4)

wherein EHB represents EHSE and/or EHB,E. Therefore, the
correlated behavior strongly confirms the validity, and
soundness, of the exponential EHSE-R(O���O) relation
(Eqn (2)).

The correlations obtained above can be used to
demonstrate the advantage of the combined use of QC
and AIM calculations. The EHB,E predicted for system V
by Eqn (2) is �15.5 kcal/mol (Table 3). If, as pointed out
in Dissection of DESE: Acceptable (EHSE) and Non-
acceptable (ENSE) Measures of HB Strength section, the
R(O���O) distance forV is forced to be too short, the EHB,E

predicted by Eqn (2) would then be too large. On the other
hand, if one uses Eqn (3) and Eqn (4) to estimate EHB,E, an
average value of �13.6 kcal/mol that is comparable to
that of I is calculated. This confirms that the HB strength
of V and I should be comparable. Hence, whereas the
geometrical consequence (O���O distance) is not a good
indicator of the HB strength in the case of V, the energy
densities allow better estimates for the energies of the HB
formation.

EHSE-R(O���O) correlation based onMP2 results. To
make the EHB,Es more in line with the MP2/6-
311þþG(d,p) results, the MP2 data in Table 1 were
plotted (as shown in Fig. 7) to obtain the regression
function sought. The regression function obtained for
the filled circle data points was (Eqn 5):

EHSE ¼ �8:426� 105expð�4:333 RðO � � �OÞÞ
fR2 ¼ 0:919; n ¼ 9 ðdata pointsg

ð5Þ

The fitting was done by excluding the data for IIb and
IIIb (as in Fig. 5).

Overall, the results of the analyses made indicate both
EHSE and EHB,E are acceptable measures of the IMHBs.
The relative strengths as determined fromAIM (as well as
from NBO) parameters should, however, be accurate
because they are determined independent of the non-H-
bonded forms. Nevertheless, the availability of more
accurate approaches is always desirable. In this connec-
tion, one of the few approaches89,91 that have been
proposed for the calculation of the SEs of IMHBs is the
use of a modified Grabowski complex parameter,24

advanced by Chen and Naidoo.92 This approach has been
shown to be very suitable especially for molecules with
J. Phys. Org. Chem. 2006; 19: 425–444
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multiple HBs found in close proximity to each other.91

The use of this approach for the study of very strong
IMHBs93 may thus be explored in future work. On the
other hand, we should note here that we have analyzed the
correlation of the predicted EHB,E values with the electron
density rb at the O-H BCP and with the differential in rb
upon H bonding (data not shown). The good linear
correlations found (with R¼ 0.972 and R¼ 0.985,
respectively) are implicitly consistent with the Chen
and Naidoo results,92 as well as with the recently reported
linear correlation of intermolecular HB energy with rb at
the HB BCP.94
NATURE OF THE IMHB INTERACTIONS
AND ENERGY DENSITY-R(O���H)
CORRELATION

The exponential EHSE-R(O���O) regression function (Eqn
(2)) cannot be used to estimate the EHSE of systems likeVI
and VII. However, the IMHB strengths of all the homo-
and heteronuclear HBs can be assessed within the tenets of
the AIM theory. Accordingly, ‘closed-shell’ and ‘shared’
interaction limits can be considered using the following
two fundamental relations (Eqn (6) and Eqn (7)):29,95

ð£2=4mÞrrðrÞ ¼ 2GðrÞ þ VðrÞ (6)

HðrÞ ¼ VðrÞ þ GðrÞ (7)

wherer2r(r) is the Laplacian of the charge density, G(r)
the electronic kinetic energy density and V(r)29 the
electronic potential energy density. [Usually the corre-
sponding BCP parameters are denoted by r2rb, Gb
Copyright # 2006 John Wiley & Sons, Ltd.
(always positive), Vb (always negative), and Hb (may be
positive or negative depending on the values of Gb and
Vb)]. In this context, shared interactions are dominated by
lowering the potential energy V(r), and are obtained when
r2rb< 0 [or when jVbj> 2Gb]. By contrast, ‘purely
closed-shell’ interactions are obtained when both Hb> 0
andr2rb> 0. The intermediate region between these two
limits, that is, interactions withHb< 0 andr2rb> 0, may
be characterized as partially covalent.96–98 Also, the
magnitudes of Vb and Hb represent the capacity of the
system to concentrate electrons at the HBCP.20 Con-
sequently, Vb and Hb should be very useful for a
comparative study of the strengths of IMHBs with
different HBmotifs as is the case in this study.20 We focus
here on the behavior of onlyHb, because theHb parameter
is more suitable to determine the nature of the
interactions.

Figure 8 shows the dependence of Hb on R(O���H) of
the X—H���O bridge (X——O, N, S, Se). The data were
fitted with a sum of power law and exponential functions:
P1d

�P2þP3 exp(�P4d) where d¼R(O���H), using four
unweighted parameters (P1, P2, P3, and P4). The plot
shows that there is a negative-to-positive cross over at
about R(O���H)� 1.86 Å where Gb�jVbj and Hb¼ 0. The
near equality also means that (£2/4m)r2rb�Gb in
accordance with Eqn (6). At values of R(O���H)< 1.86 Å,
Gb< jVbj, and Hb< 0. The Hb< 0 cases indicate the
accumulation of charge in the internuclear region is
stabilizing, indicating the respective IMHBs have varying
degrees of partial covalency.96–98,62g The subclass IA
systems (Table 2), BAA, NMA, and NZ (including all of
J. Phys. Org. Chem. 2006; 19: 425–444
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the other class II systems, data not shown) meet this
criterion. Hence, the interactions are partially covalent.
Also, becauseHb< 0 for these systems, jVbj>Gb, and the
charge accumulation is net stabilizing. In fact, out of all
the systems in Table 2, rb, Vb, and Hb are the highest and
the second highest, respectively for IIb and IIIb—the
ratios being roughly 1.6–1.8 times relative to that of I.

At values of R(O���H)> 1.86 Å, Gb> jVbj , and Hb> 0,
and the interaction is destabilizing. This region is the
‘purely closed-shell’ region.96–98,62g In our case, the
IMHBs represented in this region are heteronuclear HBs,
which are expected to show hindered covalency partly
because the X—H bond in X—H���Y is stretched only
slightly,56b or may even contract as is observed for
improper HBs.73
O2
:

:

nσ(1)O2
nσ(2)O2

C3
C4

C1 O6

H7
:

:

H8

nπ(2)O6

nσ(1)O6
HCSIhb

*(O6-H7)σnσ(O2)HCSIhb :

Chart 4. Labeling of the lone pair orbitals on O2 and O6.
HCSIhb signifies the HB donor–acceptor hyperconjugative SIs
(from the O2 lone pairs to the O6–H7 antibond orbital)
NATURAL BOND ORBITAL STUDIES

In this section, we consider the electronic bases of the H
bonding from the perspectives of the NBO theory.30 The
NBO approach can be expected to provide with several
advantages/facilities30,99–104 (See Ref. 99 for details).
However, the rationale for our use of the NBO approach is
predicated by this main attribute of the method: charge
transfer (CT) from lone pair and/or bonding orbitals of the
HB acceptor to the antibonding orbitals of the HB donor
has been found to be fundamental in HB inter-
actions.30,102 Hence, the focus in this report is mainly
on the qualitative and ‘quantitative’ predictions of the
strength of the H bonding that can be made on the basis of
the perturbative HB donor–acceptor interaction energies.
It should, however, be noted that our use of the word
‘quantitative’ here and in the rest of the report is to be
understood for the most part in a relative sense.105Wewill
also seek to get insight into the effects of substituents on
the HB strengths. Such considerations can be extremely
useful especially in those cases where intractable
interactions may be involved, as is the case in this study.

The NBO discussion that follows will be concerned
only with those systems in Subclass IA (all possessing —
O—H���O——C— IMHB motifs) with the exception of
system IV. Essentially all of the systems in Subclass IA
are highly delocalized systems. Hence, a multitude of
donor ! acceptor (D-A) stereoelectronic interactions
(SIs) obtain. Due to this reason, a report on a detailed
analysis of all the SIs of all the systems is not feasible in
this communication (in terms of space). Instead, the
discussion will focus only on the HB D-A hyperconju-
gative (HC) SIs. A cross correlation analysis using a
selected set of systems will also be made using I (which
has been extensively investigated, and is well under-
stood,15–17) as a check to gauge the strengths and
weaknesses of a given technique. Hence, the cross
correlation analysis has been done relative to the data for
I. We should note here that the NBO theory has been used
before for similar purposes.100,106–109
Copyright # 2006 John Wiley & Sons, Ltd.
HB D-A hyperconjugative stereoelectronic
interactions (HCSIhbs)

The NBO results show CT occurs from several donor
orbitals to the acceptor O6–H7 antibond (s
 (O—H)).
However, the primary donor orbital for the CT to the
s
(O—H), in the cC forms, is the ns(2)O2 orbital,
followed by ns(1)O2, that is, the two donor orbitals of the
HCSIhbs (Chart 4). By contrast, the only HCSI involving
the s
(O—H) in the cO forms is the s(C3–C4)! s
(O—
H) interaction. The second-order interaction energy E(2)
for this SI is less than half that of the ns(1)O2! s
(O—
H) interaction in the cC forms. To illustrate the dominant
nature of the CT from the ns(2)O2 orbital, relevant
parameters are provided in Table 5 for the selected set of
systems—namely, the b-CH3(Ib), -fluoro (IIb), and -
chloro (IIIb) derivatives of I.

Comparison of the data in Table 5 shows the F and Cl b-
substitutions increase the E(2) of the n((2)O2! s
(O—H)
interaction dramatically (by 232 and 172%, respectively).
That is, the D-A ability of this SI is enhanced dramatically
by the b-halo substitution. By contrast, the enhancement by
the CH3 b-substitution is much less. Accordingly, the
occupancies of the s
(O—H)NBOs, which are less than 10
me in the cO forms, increase to about 63–116 me upon H
bonding with the net CT being, respectively: 0.10801 e
(IIb)> 0.09469 e (IIIb)> 0. 0641 e (Ib)> 0.05739 e (I)).
Most importantly, the HCSIhb D-A ability that follows the
order IIb> IIIb> Ib> I is found to be consistent with the
order obtainable on the basis of O���Odistances [R(O���O)],
and not with the binding energy (for H bonding) estimates
derived through the use of Eqn (1). This provides strong
evidence that R(O���O) is a reasonable indicator of the
relative strength of the IMHBs. These results and
observations are also consistent with the AIM results
presented in earlier sections.

NBO charge transfer vis-à-vis energy of HB
formation. It has been established that CT, as reflected
by the second-order interaction energy, E(2), results in an
increase in binding energy.30 As noted above, the D-A
ability of the HB interaction is dominated by the
ns(2)O2! s
(O—H) interaction (with its SI energy
J. Phys. Org. Chem. 2006; 19: 425–444



Table 5. Charge transferred (DQ)a, NBO second-order interaction energy (E(2)) and the associated parameters for the donor-
acceptor interactions (NBOs(i)!s



(O6–H7)(j)), O–H and O���H distances, and O–H and O���H NBO bond orders (in square

brackets) calculated at the B3LYP/6-311þþG(d,p) level

RO ���H (Å) RO–H (Å) Donor NBO(i) DQ (e) DQij (e) �E(2) (kcal/mol) Ej�Ei (a.u.) Fij (a.u.)

I 1.703 0.997 ns(1)O2 0.063 0.0050 3.39 1.07 0.054
[0.091] [0.581] ns(2)O2 (0.057) 0.0474 20.23 0.68 0.107

I0 s (C3–C4) 0.0020 1.48 1.16 0.037
Ib 1.651 1.002 ns(1)O2 0.073 0.0059 3.93 1.07 0.058

[0.110] [0.568] ns(2)O2 (0.0674) 0.0582 25.21 0.69 0.119
Ib0 s (C3–C4) 0.009 1.94 1.14 0.042
IIb 1.514 1.040 ns(1)O2 0.117 0.0095 5.90 0.99 0.070

[0.179] [0.520] ns(2)O2 (0.127) 0.1135 47.01 0.66 0.160
IIb0 s (C3–C4) 0.0027 1.98 1.15 0.043
IIIb 1.550 1.028 ns(1)O2 0.105 0.0085 5.40 1.01 0.067

[0.158] [0.533] ns(2)O2 (0.107) 0.0946 39.77 0.67 0.148
IIIb0 s (C3–C4) 0.0028 2.07 1.16 0.044

aDQijvalues are derived quantities from use of relations given in Ref. 30; Ei, Ej, Fij have the usual meaning given therein; D Qvalues (no parenthesis) are
occupancies of the s
(O6–H7) antibonds andDQ’s in parentheses are the sumSDQij. The s


(O6–H7) occupancies in the cO froms are: 0.00849 e (IIb); 0.0099 e
(IIIb); 0.00909 e (Ib); and 0.00564 e (I). Primes indicate the non-H-bonded (cO) forms. Results are from B3LYP/6-311þþG(d,p) calculations.
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designated as E(2)2O2 hereafter). To determine if E(2)2O2
correlates with the apparent IMHB energy EHB,A, the
degree to which the EHSEs and the EHBEs correlate with
the E(2)2O2 data has been tested. Table 6 presents the
relevant parameters.

Let us first consider the case of EHSE.
110 Figure 9A

shows a plot of EHSE versus E(2)2O2. The plot also
includesENSE data (differences in energy obtained via Eqn
(1)) for IIb, IIIb, IIbc, IIIbc, andV. Clearly, the ENSE data
deviate from the trend. The ENSE values for these systems
have been identified as anomalous in earlier sections. The
plot is, therefore, consistent with our previous findings
already discussed. However, the trend for the other
systems shows an excellent correlation, and the equation
found is

EHSE ¼ 0:395Eð2Þ2O2 � 5:167

½R ¼ 0:992; n ¼ 11 ðdata pointsÞ; SD ¼ 0:346	
(8)

Figure 9B shows a plot of EHB,E and EHSE versus E(2)2O2.
In this case, EHB,Es are used instead of ENSEs for the five
Table 6. Second-order interaction energies E(2)a and apparent HB
kcal/mol) for MAE derivatives with O���H–O IMHB motifs. Values

Sd �E(2) �EHB,E S e �E(2)

I 20.2 13.3 (13.3) I 20.2
Ia 21.3 14 (13.4) IIa 15.6
Ib 25.2 14.7 (15.1) IIb 47
Ic 22.9 14.1 (14.4) IIc 10.6
Ibc 27.3 15.6 (16.2) IIac 8.9
V 20.8 15.5 (9.2) IIbc 15.9

a Results are from B3LYP/6-311þþG(d,p).
b Results are from B3LYP/6-311G(d,p) calculations.
cEHB,Es are those estimated using the regression function for the EHSE-R(O���O)
dMolecular systems. Methyl derivatives except for system V (see Chart 1).
eMolecular systems. F derivatives.
fMolecular systems. Cl derivatives.

Copyright # 2006 John Wiley & Sons, Ltd.
systems that deviated in Fig. 9A [for the 11 systems of
Eqn (8), EHB,EffiEHSE]. It is evident from the plot that
system V (and may be IIIac as well) shows some
deviation. The deviation, at least in the case ofV, is due to
the predicted EHB,E being �15.5 kcal/mol when it should
be of the order of�13.6 kcal/mol, as discussed in Natural
Bond Orbital Studies section. Nevertheless, the corre-
lation is of high degree of fidelity even with the two
data points included and the following equation was
found.

EHB;E ¼ 0:325Eð2Þ2O2 � 6:643

½R ¼ 0:974; n ¼ 16 ðdata pointsÞ; SD ¼ 0:813	
(9)

If the data points for V and IIIac are excluded, the
following equation obtains and the correlation is actually
excellent.

EHB;E ¼ 0:332Eð2Þ2O2 � 6:272

½R ¼ 0:991; n ¼ 14 ðdata pointsÞ; SD ¼ 0:487	
(10)
energies estimated in an empirical manner (EHB,E)
b,c (both in

in parentheses are DESE’s.

�EHB,E Sf �E(2) �EHB,E

13.3 (13.3) I 20.2 13.3 (13.3)
11 (10.9) IIIa 18.3 12.7 (12.1)

21.1 (14.5) IIIb 39.8 19.6 (13.4)
9.4 (10.1) IIIc 10.5 9.4 (9.3)
8.4 (8.7) IIIac 13.2 12 (10)
12 (9.7) IIIbc 16.5 12.1 (8.5)

correlation.
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Figure 9. A: Scatter plot of EHSE against E(2)2O2 [E(2) of the
ns(2)O2! s
(O–H) SI]. B: Correlation of EHB,E with E(2)2O2. In
this figure, Subpart B is to be compared with subpart A. The
deviation seen for V is because Eqn (2) overestimates its EHB,E
(owing to the artificial contraction of the O���O distance as
explained in the text)
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Three important conclusions emerge from the corre-
lated behavior observed in Fig. 9. (1) E(2)2O2 does
correlate with both EHSE and EHB,E, and hence it can be
concluded that it correlates with the apparent IMHB
energy, EHB,A as well. (2) The behavior provides strong
evidence that some of the energy differences calculated
by Eqn (1) (EHSEs) can indeed serve as measures of the
HB strength. (3) The behavior also serves as supporting
evidence for the validity of the exponential EHSE-
R(O���O) correlation (Trend in Energetic (E) Versus
Geometrical (G) Consequences section).

The NBO study also showed that the F and Cl b-
substituents enhance, and augment, the D-A ability of the
main p conjugative SIs (data not shown), but dramatically
enhance the ns2(O2)! s
(O—H) SIs. By contrast, single
(double) substitution(s) at a- and carbonyl position(s)
Copyright # 2006 John Wiley & Sons, Ltd.
generally diminish the dominant ns2(O2)! s
(O—H)
SI. In the methyl case, substitutions at all positions lead to
enhancement. More detailed analyses of all aspects of the
effects of substituents at different positions are not within
the scope of this paper, and may be addressed in future
communications.
SUMMARY AND CONCLUSIONS

A detailed study of the energetic, geometrical, and
electronic consequences of H bonding has been made.
Through the use of known experimental values of
energies of HB formation, the electronic consequences
of H bonding and other measures of HB strength, the
separation of the classically computed energetic
parameters (DESEs) into (i) stabilization (HB) energies
(EHSEs) that serve as apparent IMHB energies (EHB,As),
and (ii) stabilization (isomerization) energies (ENSEs) that
do not (owing to intractable interactions that are not
germane to the solitary HB donor(D)–acceptor(A)
interactions) has been accomplished. The sources of
the intractable interactions have been rationalized. The
study shows the O���O distance (G consequence) is, with
some exceptions, a reliable indicator of IMHB strength.

Analysis of the energetic-geometrical (E$G), that is,
EHSE-R(O���O) trend led to both an exponential and a
quadratic model. The exponential model is consistent
with the fundamental behavior (e.g., asymptotic beha-
vior) of the E$G correlation of intermolecular HBs. By
contrast, the quadratic model found for EHSE-R(O���O)
correlation was found to be unphysical. The exponential
model also has predictive ability, and can be used to make
reasonable estimates of EHB,As that are otherwise grossly
underestimated. The model can also be used to treat
RAHBs whose resonant spacers connecting the HB D-A
segments are very different. The study also shows that the
HB strengths of NZ and MAE are essentially the same
(despite the different nature of resonant spacers).

AIM and NBO approaches allow the isolation of the
HB D-A interactions from intractable interactions that are
not germane to the HB interaction. Accordingly, the
electronic consequences of H bonding have been used to
check if the quantum chemically calculated HB SEs are
acceptable measures of the HB strength and to obtain
reliable relative HB strengths. Hence, the AIM and NBO
approaches can serve as complementary, and sometimes
indispensable, alternatives for the calibration and
rationalization of IMHB strengths, and are highly
recommended especially for the study of IMHBs, which
may involve intractable interactions.
Supplementary material available

Two figures along with discussion text on the assessment
of the causes of the intractable interactions. This
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material is available free of charge via the Internet
at http://www.interscience.wiley.com/jpages/0894–3230/
suppmat/
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